

Individual prediction-based dose adaptation of capecitabine:

in silico comparison with the standard method, impact on limiting toxicity and on **antitumour efficacy**

Ines Paule, Michel Tod, Emilie Hénin, Benoit You, Gilles Freyer, Pascal Girard

EMR 3738 "Therapeuti**C** Targeting in Oncology" Faculty of Medecine Lyon Sud, France

20 th PAGE meeting, Athens, 9 June 2011

Introduction

• 5-FU:

- inhibitor of cell cycle
- one of the most used anticancer drugs for the treatment of solid tumors (colorectal, breast) (since 1957)
- Capecitabine (Xeloda[®], Roche):
 - prodrug of 5-FU taken orally (a blockbuster since 2002)
 - main toxicity: hand-and-foot syndrome (54% patients) (redness, peeling, numbress, pain of the skin of palms and soles)

Gra	de	0	1	2	3
Symptoms	Pain	None	Tingling or burning	Pain	Severe pain
	Skin damage	None	Mild redness, swelling; skin intact	Redness, swelling; skin intact	Blisters, peeling, loss of function

[Hénin *et al.,* A dynamic model of hand-and-foot syndrome in patients receiving capecitabine, *Clin Pharmacol Ther*, *2009*]

Dose adaptation strategies

If grade ≥ 2 , treatment stopped until HFS returns to grade ≤ 1 . Subsequent doses are changed according to the table:

Crada	Occurrences				
Glade	1	2	3	4	
2	100%	75%	50%	0	
3	75%	50%	0	0	

Standard:

Dose adaptation strategies

Standard:

If grade ≥ 2 , treatment stopped until HFS returns to grade ≤ 1 . Subsequent doses are changed according to the table:

Crada	Occurrences					
Glade	1	2	3	4		
2	100%	75%	50%	0		
3	75%	50%	0	0		

Alternative:

individualized adaptation according to **model-based prediction** of patient-specific toxicity **risk**

Develop an individual prediction-based dose adaptation method using a model for **ordinal** observations that results in **less toxicity** without reducing **efficacy** as compared to the standard dose reductions

Compare its performance to that of the standard practice:

- impact on HFS toxicity
- impact on antitumour efficacy
- → by randomized *in silico* clinical trials

Individual prediction-based dose adaptation

Population HFS model

Individual prediction-based dose adaptation

Indiv.observations

(doses, grades, covar.)

Population HFS model

Dose determination rules

Target:

Average predicted probability of HFS grade ≥2 over next cycle (3 weeks) **≤ Target Risk**

"Individualized" dose:

Daily dose closest to this target,

constrained to be at least 50% and at most 100% or 150% of the nominal dose (depending on the protocol and HFS history)

The second side of a coin

Reducing the severity and frequency of adverse effects is desirable, but what if the anticancer effect is reduced as well?

\rightarrow Need to incorporate a model of **effect on tumours**

Tumour(s) measure: sum of largest tumour diameters (mm)

[*Claret et al. J Clin Oncol. 2009 27(25):4103-8*] 17

In silico clinical trial

<u>3 parallel arms according to dose adaptation method:</u>

- Standard
- Basic individual risk prediction-based
- Advanced individual risk prediction-based

Common features for all arms:

- 50,000 virtual patients per arm.
- **Dosing regimen**: 2500 mg/m²/day for 2 weeks, 1 week rest.
- Max 30 weeks (10 cycles of 3 weeks).
- **Interruption** of treatment in case of grade ≥ 2 HFS, until recovery to grade < 1.
- Next doses are reduced according to the corresponding protocol.
- Definitive end of treatment:
 - if HFS grade ≥2 lasts for more than 6 consecutive weeks,
 if HFS grade ≥2 appears for the 4th time,
 if disease progression is observed,

 - if complete response is observed and the patient has received 6 treatment cycles.
- HES is monitored for 4 weeks after the treatment is ended.

aculté de Médecine

In silico clinical trial: simulation of tumour and HFS observations

- **Covariate** values were simulated from distribution estimated from clinical trial data used to build the corresponding models
- **HFS grade observations** were obtained for **each week** by random sampling according to grade probabilities defined by the model
- Tumour observations were obtained every 6 weeks

Disease status (similar to RECIST*)	Criteria
Partial response (PR)	>30% reduction from baseline
Complete response (CR)	<10 mm
Progressive disease (PD)	>20% and at least 5 mm increase above lowest observed value
Stable disease (SD)	all other cases

*RECIST: Response Evaluation Criteria In Solid Tumours

Dose adaptation protocols

aculté de Médecine YON SUD	Protocols	Dose reductions	Dose increases	Dose adaptation rule	Dose limits
EA 3738 UNIV. LYON I	Standard	After the 2 nd occurrence of G≥2	-	-25% after 2 nd occurrence of G≥2 -50% after the 3 rd 0% after the 4th	[50%, 100%]

Dose adaptation protocols

Faculté de Médecine LYON SUD Charles Mérieux	Protocols	Dose reductions	Dose increases	Dose adaptation rule	Dose limits
EA 3738 UNIV. LYON I	Standard	After the 2 nd occurrence of G≥2		-25% after 2 nd occurrence of G≥2 -50% after the 3 rd 0% after the 4th	
Basic prediction- based After the 1 st occurrence of at least G1, if the risk of G≥2 exceeds the TR		_	Corresponding to predicted average risk of G≥2 over next 3 weeks ≤ 6 %	[50%, 100%]	

Faculté d LYOI Charles

> EA UNIV.

Dose adaptation protocols

Médecine N SUD Mérieux	Protocols	Dose reductions	Dose increases	Dose adaptation rule	Dose limits
738 LYON I	Standard	After the 2 nd occurrence of G≥2		-25% after 2 nd occurrence of G≥2 -50% after the 3 rd 0% after the 4th	
	Basic prediction- based	After the 1 st occurrence of at	_	Corresponding to predicted average risk of G≥2 over next 3 weeks ≤ 6 %	[50%, 100%]
	Advanced prediction- based	least G1, if the risk of G≥2 exceeds the TR	If stable disease & no HFS (start after 4 cycles) or if ≥ 6 weeks in G1 and no G ≥ 2	Corresponding to predicted average risk of G≥2 over next 3 weeks ≤ 4 %	Before G≥2: [50%, 150%] After G≥2: [50%, 100%]

RESULTS: Performance of adaptation protocols

	Number of weeks with G≥2 (all patients / only those having G≥2)	% of patients having G≥2	% of patients having reoccurring events with G≥2	Duration of reoccurring events with G≥2 (weeks)	% of patients who dropout due to HFS
Standard	5.2 / 8.1	55.5%	13.6%	5.7	23.2%
Basic	3.9 / 6.9	55.6%	13.1%	5.4	22.4%
Advanced	3.8 / 6.8	55.2%	12.6%	5.0	21.6%

Results: impact on efficacy

	% of responders	Relative change from baseline (median)	% of patients who have disease progression
Standard	49.2%	-23.3%	31.7%
Basic	49.4%	-23.3%	31.7%
Advanced	49.4%	-23.1%	31.9%

LYON SUD Charles Mérieux

Dynamics of the distributions of the HFS grades

Standard

Advanced model-based

Tested variations

of prediction-based dose adaptations

- •Target risks: 4%, 5%, 6%
- -Allowing dose reductions down to 25% of nominal dose
- -Allowing dose increases up to 125% of nominal dose
- •Time of starting dose increases: after 2 cycles
- Allowing dose increases only if no HFS was observed
- Lower target risk for increases than for reductions
- •Lower target risk for reductions if patient has tumour response (only if 95th percentile of predicted tumour size at the next scan does not correspond to disease progression)

CONCLUSIONS

about capecitabine dose adaptation results

Individual prediction-based dose adaptation on the basis of **HFS grade** observations was developed and showed to be:

- slightly **superior** in terms of HFS toxicity and
- equivalent in terms of efficacy

The benefits on average could be:

- ▶ 10 days for duration (by reducing the frequency and length of reoccurring events with G≥2)
- **>** 7% for dropouts due to HFS

Obstacles & perspectives for dose adaptation based on **ordinal** variable

Estimates of individual random effects (EBEs) are **poor** due to:

- categorical data being poor in information,
- low identifiability of the dose-toxicity grade relationship (observed values of response-driving variable are too small to identify the toxic effect function well),
- uneven distribution of grades within-subject.

[Paule et al. Empirical Bayes estimation of random effects of a mixed-effects proportional odds Markov model for ordinal data. Computer Methods and Programs in Biomedicine (in press)]

However, for this model, poor EBEs did not have a significant impact on the results because the **probabilities** of HFS grades are highly **insensitive to dose changes**

Higher impact of prediction-based dose adaptation based on ordinal variable is expected for **reversible** toxicities with **faster dynamics** (e.g. gastrointestinal)

Acknowledgements

The colleagues from EMR3738 Therapeutic Targeting in Oncology:

Michel Tod, Emilie Hénin, Benoit You, Gilles Freyer, Pascal Girard

UNOVARTIS for funding my PhD studies

for providing the capecitabine toxicity data of two Phase III trials

Thank you!

20 th PAGE meeting, Athens, 9 June 2011

Backups

Criteria for comparison of dose adaptation strategies

Concerning **HFS toxicity**:

- Number of weeks with HFS grade ≥ 2
- % of patients having reoccurring events with $G \ge 2$
- Duration of reoccurring events with $G \ge 2$
- % of patients who drop out due to HFS

Concerning anticancer effect:

- % of patient having tumour response
- % of patients who have progression of disease
 (→dropout due to lack of efficacy)
- Relative change from baseline of tumour sizes

Statistical power analysis

100 replications of trials with

- 300 patients per arm
- 350 patients per arm
- 600 patients per arm

Wilcoxon rank sum test used to test the difference in severe toxicity duration

CONCLUSION: **350 patients per arm** would be needed for a clinical trial to achieve at least **90%** statistical power to demonstrate a difference in severe HFS duration at a=0.05.

dQ

Population dose-toxicity model

mixed-effects transitional proportional odds model for ordinal data

YON SUD **Charles Mérieux**

$$\frac{dQ}{dt} = Dose - K_i \cdot Q, \qquad K_i = K \cdot e^{\eta_{u}}$$

$$logit[P(Y_{it} \le 0 | Y_{it-1} = G^*)] = B_0^* - \frac{E_{MAX}^* \cdot (Q_{it} \cdot K_i)}{ED_{50} + (Q_{it} \cdot K_i)} + (CLcr_i - 75.5) \cdot \theta_{CLcr} + \eta_{2i}$$

$$logit[P(Y_{it} \le 1 | Y_{it-1} = G^*)] = B_0^* + B_1^* - \frac{E_{MAX}^* \cdot (Q_{it} \cdot K_i)}{ED_{50} + (Q_{it} \cdot K_i)} + (CLcr_i - 75.5) \cdot \theta_{CLcr} + \eta_{2i}$$

$$P(Y_{it} \le C | Y_{it-1} = C^*) = \frac{exp(logit)}{1 + exp(logit)}$$

$$p_{it0} = P(Y_{it} = 0) = P(Y_{it} \le 0)$$

$$p_{it1} = P(Y_{it} = 1) = P(Y_{it} \le 1) - P(Y_{it} \le 0)$$

$$p_{it1} = P(Y_{it} = 2) = P(Y_{it} \le 2) - P(Y_{it} \le 1) = 1 - P(Y_{it} \le 1)$$
a priori information: $\Theta = (B_0^0, B_1^0, B_0^2, B_1^0, B_1^1, B_1^2, E_{utry}^0, E_{utry}^1, E_{utry}^0, E_$

 $\begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} \sim N(0, \Omega), \quad \Omega = \begin{bmatrix} \omega_1^2 & \omega_{12} \\ \omega_{12} & \omega_2^2 \end{bmatrix}$

[Henin et al. Clin Pharmacol Ther. 2009 85(4):418-25] 36

In silico clinical trial: doses

- Capecitabine is available in tablets of **150** mg and **500** mg
- Daily doses are **rounded** to values recommended in prescription guidelines (so that even amounts can be taken in the morning and in the evening) :
 3000, 3300, 3600, 4000, ..., 5600 mg
 (+ reduced doses: 1000, 1300, ...)
- Both models assume that dosing is 2500mg/BSA once a day (the real dosing is 1250mg/BSA twice a day)

In silico clinical trial: simulation of Hand-and-foot syndrome

- Basal creatinine clearance simulated from a lognormal distribution, restricted to be in [27, 219] (logCLcr ~ N(mean = 4.34, SD = 0.349), CLcr = exp(logCLcr))
- **BSA** simulated from a normal distribution, restricted to be in [1.19, 2.5] (mean = 1.82, SD = 0.227)
- Individual ETA values are simulated from a bivariate normal distribution as reported for the HFS model
- HFS grade observations are obtained for each week by random sampling according to grade probabilities defined by the model

harles Mérieux

In silico clinical trial: simulation of tumour size and disease status

• **Baselines** simulated from a lognormal distribution, restr. to min 10 mm logbase ~ N(mean=4.25, SD=0.5), baseline = exp(logbase)

Observations every 6 weeks,

with an assumed proportional measurement error: observation = true value * exp (error),

error ~ N(mean=0, SD=0.025)

Disease status (similar to RECIST*)	Criteria
Partial response (PR)	>30% reduction from baseline
Complete response (CR)	<10 mm
Progressive disease (PD)	>20% and at least 5 mm increase above lowest observed value
Stable disease (SD)	all other cases

*RECIST: Response Evaluation Criteria In Solid Tumours

Grade probabilities

Estimation of individual random parameters

Bayesian estimation approach *Maximum A Posteriori* (MAP) is used for estimation of individual parameters on the basis of individual's observed data and population model

Estimation of individual random parameters

Implementation of the **MAP method**:

$$\hat{\eta}_{iMAP}(H_{it}) = Arg \left[\max_{\eta_i} \frac{p(\eta_i) \cdot p(H_{it} | D_{it}, H_{it-1}, CLcr_i, \Theta, \eta_i)}{p(H_{it})} \right]$$

Likelihood (of **ordinal** observations): $p(H_{it}|D_{it}, H_{it-1}, CLcr_i, \Theta, \eta_i) = \prod_{j=1}^{t} \prod_{g=0}^{2} p_{ijg}^{y_{ijg}}$ $y_{itg} = \begin{cases} 1, \text{ if } Y_{it} = G, \\ 0, \text{ otherwise;} \end{cases} \text{ where } G = \{0, 1, \ge 2\}$

Maximization by Simplex

CTO EA 3738

Simulation of the trial

Colorectal tumour inhibition model

harles Mérieur

$$\frac{dy(t)}{dt} = k_{growth} \cdot e^{\eta_1} \cdot y(t) - dose(t) \cdot k_{drugkill} \cdot e^{\eta_2} \cdot e^{-\lambda \cdot e^{\eta_3} \cdot t} \cdot y(t)$$

y(t) – sum of largest tumour diameters (mm), time is weeks

	TV	CV
k _{growth}	0.021	80%
$k_{_{drugkill}}$	0.025	69%
λ	0.053	159%

 $\sqrt{\sigma} = 11.83 \, (mm)$

[Claret et al. J Clin Oncol. 2009 27(25):4103-8] 45

Faculté de Médecine LYON SUD Charles Mérieux

EA 3738 UNIV. LYON

Simulated tumour dynamics

Tumour dynamics (median and 95% interval) Effect of IIV in k.drug.kill

Tumour dynamics (median and 95% interval) Effect of IIV in k.growth

Tumour dynamics (median and 95% interval) Effect of IIV in resistance

Results of "Advanced" method if true ETAs or population values were used

	Number of weeks with G≥2 (all patients / only those having G≥2)	% of patients having G≥2	% of patients having reoccurring events with G≥2	Duration of reoccurring events with G≥2 (weeks)	% of patients who dropout due to HFS	% of responders	Relative change from baseline (median)	% of patients who have disease progression
Advanced EBE	3.8 / 6.8	55.2%	12.6%	5.0	21.6%	49.4%	-23.1%	31.9%
Advanced True ETAs	3.7 / 6.6	55.0%	12.5%	4.8	20.5%	49.1%	-22.1%	33.0%
Advanced No ETAs	3.8 / 6.8	55.1%	12.4%	5.2	22.0%	48.9%	-22.0%	33.3%

PPC for transitions

Lyon 1

